

DotNetNuke Scheduling
Provider

Dan Caron

Version 1.0.0

Last Updated: June 20, 2006

Category: Scheduler

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Information in this document, including URL and other Internet Web site references, is

subject to change without notice. The entire risk of the use or the results of the use of

this document remains with the user.

The example companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted herein are fictitious. No association with any

real company, organization, product, domain name, email address, logo, person,

places, or events is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user. Without

limiting the rights under copyright, no part of this document may be reproduced,

stored in or introduced into a retrieval system, or transmitted in any form or by any

means (electronic, mechanical, photocopying, recording, or otherwise), or for any

purpose, without the express written permission of Perpetual Motion Interactive

Systems, Inc. Perpetual Motion Interactive Systems may have patents, patent

applications, trademarks, copyrights, or other intellectual property rights covering

subject matter in this document. Except as expressly provided in any written license

agreement from Perpetual Motion, the furnishing of this document does not give you

any license to these patents, trademarks, copyrights, or other intellectual property.

Copyright © 2005, Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

DotNetNuke® and the DotNetNuke logo are either registered trademarks or

trademarks of Perpetual Motion Interactive Systems, Inc. in the United States and/or

other countries.

The names of actual companies and products mentioned herein may be the trademarks

of their respective owners.

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Abstract

In order to clarify the intellectual property license granted with contributions of software
from any person or entity (the "Contributor"), Perpetual Motion Interactive Systems
Inc. must have a Contributor License Agreement on file that has been signed by the
Contributor.

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Contents

DotNetNuke Scheduling Provider 1

Introduction ...1

Ideal Solution ...1

Design/Architecture Issues... 2

Implemented Solution .. 2

Schedule Screen .. 4

Edit Schedule Screen... 5

Schedule Status Screen ..7

Schedule History Screen ... 9

Data Structure ... 9

Sample Code...10

Scheduled Task Settings...12

Class Diagram ..13

Additional Information... 14

Appendix A: Document History ...15

 1

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

DotNetNuke Scheduling Provider

Introduction

In DotNetNuke 2.0 we introduced two pieces of functionality that required recurring

operations to be processed regularly (Users Online and Site Log). A solution was

implemented that launched separate threads on Global.asax.vb in the Application_Start

method for each of the operations. Functionality on the horizon for DotNetNuke will

ultimately require more of these types of recurring operations. Our goal is to provide a

solution that allows core functionality and 3rd party functionality to integrate easily into

a DotNetNuke scheduling engine.

Ideal Solution

The ideal solution is one that allows for scheduled tasks to be run at specified intervals or

scheduled times. The scheduler should run 24/7. It should allow for 3rd party modules

to easily schedule tasks to be run. It should have an interface to display the current

status of the scheduled tasks as well as their history. We should have the ability to edit

the schedule of tasks in the scheduler. And, finally, the scheduler should be

implemented using the Provider Model so competing scheduling products can be easily

integrated without modifications to the DotNetNuke core.

 2

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Design/Architecture Issues

One limitation of the Scheduler is that it cannot run 24/7 without help from an external

program. This is a limitation of ASP.NET, and not DotNetNuke. The Worker Process

used within IIS will periodically recycle according to settings in machine.config. Some

hosts may have settings that recycle the worker process every 30 minutes (forced), while

some may have more complicated settings, such as recycling the worker process after

3000 web site hits, or after 20 minutes of inactivity. It is this recycling of the worker

process that will shut down the scheduler, until the worker process is started again (i.e.

by someone hitting the website, which in turn starts up the worker process, starting up

the scheduler as well).

This functionality is actually a major benefit to web applications as a whole, in a hosted

environment because it keeps runaway applications from taking down the server. But, it

isn’t without its drawbacks as we experience them with the scheduler.

The bottom line is that the scheduler will run 24/7, as long as someone is constantly

visiting your website. It is during periods of dormancy that it possibly could shut down.

It is for this reason that you need to proceed with caution in regards to the types of tasks

you schedule. Make sure the tasks don’t have to run “every night at midnight”, etc…a

more suitable task is one that runs “once per day” or “once every 2 minutes”, that doesn’t

mind if it’s not run during periods of inactivity.

Implemented Solution

The scheduling solution introduced in DotNetNuke 2.1.1 is a multi-threaded scheduler

that utilizes a thread pool to manage the tasks. The thread pool helps to reuse threads

that have recently been used. So, rather than killing and creating new threads the thread

pool reuses them.

Creating a multi-threaded application is quite tricky, as you have to take great care in

making sure that no two threads can write to the same object simultaneously. To reach a

reliable multi-threaded application, there are several instances of a ReaderWriterLock

that help to lock/unlock objects for read/write access.

First let’s see how web.config sets up the scheduler to run.

 3

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

You can see the scheduler uses the provider model, similar in setup to the data providers.

Note the following attributes:

� debug – this setting, when set to true, will generate a lot of log file entries to help

debug the scheduler. Debugging multi-threaded applications is always a challenge.

This is one setting that can help you figure out why a task is or isn’t getting run.

� maxThreads – this specifies the maximum number of threads to use for the

scheduler. “-1” is the default in web.config, which means “leave it up to the

scheduler to figure out”. In the scheduler, it is capped at 10 as a max. If you specify

a value greater than 0, it will use that number as the max # of thread pools to use.

� enabled – this is the high-level power switch for the scheduler. Set to “false” to

disable scheduled events entirely. This is helpful if you are debugging other

DotNetNuke functionality…it helps alleviate the multi-threaded debugging challenge

when it’s not necessary.

Now let’s look at where to find the scheduler in DotNetNuke. Here is where it is:

 4

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Schedule Screen

Clicking on Schedule will bring you to the following screen. This screen shows you the

Type (more on that later), whether the scheduled task is enabled or not, the frequency to

run the task, the retry time lapse (used if the task fails), and the next start date & time for

that task. There are two links for each task: a) an edit icon b) a history link. More on

these later in this document.

The following actions are available from this screen:

 5

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Edit Schedule Screen

You can edit a scheduled task’s settings by clicking on the pencil next to the task. This

will bring you to the following screen:

� Available Tasks – this drop down includes a list of all classes in any assemblies in

the /bin directory that inherit from DotNetNuke.Scheduling.SchedulerClient.

Reflection is used to gather this list.

 6

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

� Schedule Enabled – select this to enable the task to run in the scheduler. Uncheck it

to disable the task in the scheduler.

� Time Lapse – this represents how often you would like the task to run. You may

choose “x” number of minutes/hours/days.

� Retry Frequency – if the scheduled task fails, it will be retried after this timeframe

has lapsed.

� Retain Schedule History – each time the task is run, a record is stored in the

database to reflect the success/failure of the task, and it also stores any notes that

were written during execution (more on that later). The number specified in this

field represents how many records to retain in history for this task.

� Run on Event –You can schedule tasks to run on APPLICATION_START. Currently

the only option here is APPLICATION_START. After quite a bit of testing, it was

discovered that APPLICATION_END is a bad place to put code that must run…there

is no guarantee that it will ever run…therefore APPLICATION_END is not an option

here.

� Catch up Enabled – If your task is scheduled to run every 10 minutes, for instance,

and the scheduler is shut down for some reason (reboot of server, etc…). When the

scheduler is started again, if catch up is enabled for this task, the task will run once

for each of the time lapses that were missed. So if the scheduler was down for an

hour and catch up is enabled, it will run the task 6 times to catch up. If catch up is

not enabled, the scheduler will just run the scheduled task once and continue with

its schedule

� Object Dependencies – Since the scheduler is multi-threaded, it is important to

avoid deadlocks on simultaneously running threads. For this reason, an object

dependency can be specified to prevent other tasks with the same object dependency

at the same time. For instance, if you have one task (“Task A”) that does a select on

the Users table…and it has an object dependency of “Users” (this doesn’t necessarily

have to relate to a table name, it can be anything, but for clarity I’m using “Users”

because we are using the Users table)…another task (“Task B”) does an massive

update on the “Users” table. If you don’t want these two tasks to run at the same

time ever, then make sure they have the same object dependency. You can specify

more than one (comma delimited). So for “Task B” you could have object

dependencies of “Users,UsersOnline,Portals”…and that task won’t run when “Task

A” is running because they have conflicting dependencies. One will run, and when it

finishes, the other will run.

 7

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Schedule Status Screen

Clicking on “View Schedule Status” will bring you to the following screen. In this screen

you can see the current status of the schedule, how many threads are active/available,

and you can start and stop the scheduler. You can also see any tasks that are currently

processing, as well as those in the queue.

� Current Status – this tells you what status the scheduler is in. Values you may see

here are:

 WAITING_FOR_OPEN_THREAD

 8

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

 RUNNING_EVENT_SCHEDULE

 RUNNING_TIMER_SCHEDULE

 SHUTTING_DOWN

 STOPPED

� Max Threads – this is determined in web.config (details above)
Active Threads – tells you how many tasks are currently running. Above you can see two

tasks running.

� Free Threads – this is MaxThreads minus Active Threads

� Command – this allows you to start/stop the scheduler. Note: you can disable it in

web.config as well for a long-term setting.

� Items processing – these tasks are currently being executed.

Schedule ID – unique identifier for the scheduled task

Type – the fully qualified type & assembly of the task

Started – time & date when the task was started

Duration - # of seconds the task has been running

Object dependencies – explained above

Triggered by – tells you whether the task was triggered by an event or the timer

Thread – this is the thread id that the task is running on

Notes – any notes that are written out during task execution will be displayed here

(more on this later)

Process group – this is the numeric representation of the thread pool that the task

was assigned to (helpful for multi-threaded debugging, etc.)

� Items in Queue – these tasks are queued up for execution.

Schedule ID – unique identifier for the scheduled task

Type – the fully qualified type & assembly of the task

Next Start – time & date when the task is scheduled to run next

Overdue - # of seconds that have passed since the task should have run

Time Remaining - # of seconds until the task is scheduled to run

Object dependencies – explained above

Triggered by – tells you whether the task was triggered by an event or the timer

Process group – this is the numeric representation of the thread pool that the task

was assigned to (helpful for multi-threaded debugging, etc.). The thread pool is

assigned just before the task is executed.

 9

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Schedule History Screen

The following screen represents the history of a scheduled task. You can see when the

task began, ended, how long it took to execute, whether it was successful, when its next

start was scheduled for, and any notes written out during execution.

Data Structure

The data that drives the scheduler is stored in a database and utilizes the default

DotNetNuke database provider as specified in web.config. There are three tables:

 10

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Sample Code

Below is an example of a scheduled tasks. It can be found in the following file in the

DotNetNuke project:

/admin/Users/UsersOnlineDB.vb

Each task has it’s own class, in this case the class name is PurgeUsersOnline.

The class must inherit from DotNetNuke.Scheduling.SchedulerClient

The class must have a constructor with the same signature as the one to the right. You must also set

the value of the ScheduleHistoryItem to the value of the incoming parameter.

The DoWork method is what gets called from the scheduler. It must be follow the same logic &

format as the example to the right…meaning, you need a Try/Catch, with all of the required items

included (required items are noted in the code).

Me.Progressing tells the scheduler that the task is progressing. This is optional, and is useful for long

 11

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

running tasks.

UpdateUsersOnline() is where the actual work is getting done.

Me.ScheduleHistoryItem.Succeeded = true is required after the work is done

If you want to add any notes to the schedule history, you can call “AddLogNote()” as shown to the

right. You can call it as many times as necessary.

It is important to properly handle exceptions in DoWork(). Ideally, copy the entire Catch section to

your task class.

Once you compile your class and put it in /bin, it will be available in the schedule admin screens to

add the task to the schedule

 12

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Scheduled Task Settings

There is a table named “ScheduleItemSettings” that can store settings for each scheduled

task. The settings are stored in key/value pairs with a foreign key of

Schedule.ScheduleID. The settings can be retrieved from your task class (i.e. in the

DoWork() method perhaps) using the following syntax:

Dim myValue as String = Me.ScheduleHistoryItem.GetSetting("MyKey")

Or you can retrieve the entire collection of settings in a HashTable:

Dim myHashTable as HashTable = Me.ScheduleHistoryItem.GetSettings

The settings are retrieved from the table when the schedule queue is refreshed from the

database (every 10 minutes or when a change is made to the schedule).

 13

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Class Diagram

 14

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Additional Information

The DotNetNuke Portal Application Framework is constantly being revised and

improved. To ensure that you have the most recent version of the software and this

document, please visit the DotNetNuke website at:

http://www.dotnetnuke.com

The following additional websites provide helpful information about technologies and

concepts related to DotNetNuke:

DotNetNuke Community Forums

http://www.dotnetnuke.com/tabid/795/Default.aspx

Microsoft® ASP.Net

http://www.asp.net

Open Source

http://www.opensource.org/

W3C Cascading Style Sheets, level 1

http://www.w3.org/TR/CSS1

Errors and Omissions

If you discover any errors or omissions in this document, please email

marketing@dotnetnuke.com. Please provide the title of the document, the page number

of the error and the corrected content along with any additional information that will

help us in correcting the error.

 15

DotNetNuke Scheduling Provider

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

Appendix A: Document History

Version Last Update Author(s) Changes

1.0.0 Aug 16, 2005 Shaun Walker • Applied new template

