DotNetNuke Scheduling
Provider

\ 3
Y« DOTNETNUKE

Version 1.0.0
Last Updated: June 20, 2006
Category: Scheduler

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

Information in this document, including URL and other Internet Web site references, is
subject to change without notice. The entire risk of the use or the results of the use of
this document remains with the user.

The example companies, organizations, products, domain names, e-mail addresses,
logos, people, places, and events depicted herein are fictitious. No association with any
real company, organization, product, domain name, email address, logo, person,
places, or events is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced,
stored in or introduced into a retrieval system, or transmitted in any form or by any
means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Perpetual Motion Interactive
Systems, Inc. Perpetual Motion Interactive Systems may have patents, patent
applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license
agreement from Perpetual Motion, the furnishing of this document does not give you
any license to these patents, trademarks, copyrights, or other intellectual property.

Copyright © 2005, Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

DotNetNuke® and the DotNetNuke logo are either registered trademarks or
trademarks of Perpetual Motion Interactive Systems, Inc. in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks
of their respective owners.

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

Abstract

In order to clarify the intellectual property license granted with contributions of software
from any person or entity (the "Contributor"), Perpetual Motion Interactive Systems
Inc. must have a Contributor License Agreement on file that has been signed by the
Contributor.

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

Contents

DotNetNuke Scheduling Providercccccecececececececececececenenes 1

INTTOAUCTION ...ttt ettt e bt e et e e ae e s bt e s e e bt e st e s st e sabeesaeens 1
IdEal SOIUION ...ttt et s s e s e 1
Design/Architecture ISSUES........cooieeiiieriiiriiiieeteee ettt 2
Implemented SOIULIONoevvueiiriiieiiieirieerte ettt e e s sree e st e e saeeesaeeesnaeens 2
SCREAULE SCIEEN ..eeeeeeeeieeeeeeee ettt eee e e e e e eaa e e e e e eareeeeeensseensseeeeeensseeeeannns 4
Edit SChedUle SCIEEM......uuvveiiieiiieeeteieee et e eeeeerrrereeeeeeeeesesssrraeeesessnsssseneseeas 5
Schedule Statts SCIEEIuvviiieeiiieeeeceee ettt eee e e e e eareeeeeeaaeeeeeeaee e e snsaeeeennnens 7
Schedule HiStOTY SCIEEINccevuviirriieriiieiieiriteeeiteeeteseiteesateessaaeessaseesssseessaeesseesssnaeens 9
Data StIUCTUIE ..ccoee e e e e e e e e e e s e e e e e e e e e e e e e e e e 9
SAIMNPLE COAE......eeiruiieiriieiriieieieeeiteeerte et e et e e st e e sste e s st e e sssaeessaeessaesssaesssseessssaesssseens 10
Scheduled Task SEttNgS........ccocueiriiriiiiiierieeteeeete ettt st ee s 12
Class DIAGTAIN ..ceceuvieiriieeniieeniieeeiteeeeestteesat e e st e s ssaeesssteesssaesssaaessaeessaessssesssssaessseeas 13

Additional INformation....ccccceeeececeececceceececcececcececceccacescecess 14

Appendix A: Document HiStOory ...ccccceceececacnccecececscscsecececsescl’

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

DotNetNuke Scheduling Provider

Introduction

In DotNetNuke 2.0 we introduced two pieces of functionality that required recurring
operations to be processed regularly (Users Online and Site Log). A solution was
implemented that launched separate threads on Global.asax.vb in the Application_ Start
method for each of the operations. Functionality on the horizon for DotNetNuke will
ultimately require more of these types of recurring operations. Our goal is to provide a
solution that allows core functionality and 3rd party functionality to integrate easily into
a DotNetNuke scheduling engine.

Ideal Solution

The ideal solution is one that allows for scheduled tasks to be run at specified intervals or
scheduled times. The scheduler should run 24/7. It should allow for 3rd party modules
to easily schedule tasks to be run. It should have an interface to display the current
status of the scheduled tasks as well as their history. We should have the ability to edit
the schedule of tasks in the scheduler. And, finally, the scheduler should be
implemented using the Provider Model so competing scheduling products can be easily
integrated without modifications to the DotNetNuke core.

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

Design/Architecture Issues

One limitation of the Scheduler is that it cannot run 24 /7 without help from an external
program. This is a limitation of ASP.NET, and not DotNetNuke. The Worker Process
used within IIS will periodically recycle according to settings in machine.config. Some
hosts may have settings that recycle the worker process every 30 minutes (forced), while
some may have more complicated settings, such as recycling the worker process after
3000 web site hits, or after 20 minutes of inactivity. It is this recycling of the worker
process that will shut down the scheduler, until the worker process is started again (i.e.
by someone hitting the website, which in turn starts up the worker process, starting up
the scheduler as well).

This functionality is actually a major benefit to web applications as a whole, in a hosted
environment because it keeps runaway applications from taking down the server. But, it
isn’t without its drawbacks as we experience them with the scheduler.

The bottom line is that the scheduler will run 24/7, as long as someone is constantly
visiting your website. It is during periods of dormancy that it possibly could shut down.
It is for this reason that you need to proceed with caution in regards to the types of tasks
you schedule. Make sure the tasks don’t have to run “every night at midnight”, etc...a
more suitable task is one that runs “once per day” or “once every 2 minutes”, that doesn’t
mind if it’s not run during periods of inactivity.

Implemented Solution

The scheduling solution introduced in DotNetNuke 2.1.1 is a multi-threaded scheduler
that utilizes a thread pool to manage the tasks. The thread pool helps to reuse threads
that have recently been used. So, rather than killing and creating new threads the thread
pool reuses them.

Creating a multi-threaded application is quite tricky, as you have to take great care in
making sure that no two threads can write to the same object simultaneously. To reach a
reliable multi-threaded application, there are several instances of a ReaderWriterLock
that help to lock/unlock objects for read/write access.

First let’s see how web.config sets up the scheduler to run.

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

<scheduling defaultProvider="DNN3cheduler™ »
<providers:
<olear/r
<add name = "DNN3cheduler™
type = "DotNetMuke.Scheduling. DNNZcheduler, DotNetMNuke.DNNZ3cheduler™
providerPath = "~%Providers' SchedulingProvidersh DNNScheduler! ™
debug="false"
wax Threads="-1"
enghled="trus"
dr
</providerss
</acheduling:

You can see the scheduler uses the provider model, similar in setup to the data providers.
Note the following attributes:

< debug — this setting, when set to true, will generate a lot of log file entries to help
debug the scheduler. Debugging multi-threaded applications is always a challenge.
This is one setting that can help you figure out why a task is or isn’t getting run.

< maxThreads — this specifies the maximum number of threads to use for the
scheduler. “-1” is the default in web.config, which means “leave it up to the
scheduler to figure out”. In the scheduler, it is capped at 10 as a max. If you specify
a value greater than o, it will use that number as the max # of thread pools to use.

<> enabled — this is the high-level power switch for the scheduler. Set to “false” to
disable scheduled events entirely. This is helpful if you are debugging other
DotNetNuke functionality...it helps alleviate the multi-threaded debugging challenge
when it’s not necessary.

Now let’s look at where to find the scheduler in DotNetNuke. Here is where it is:

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

g
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

*Home Admin '“

i) Pbst Settings
Fa i

= Portals
= Module Definitions

zlcome to D . File Manager

Vendors

. soL
rrator Login:
9 & Schedule
v adrmin
adrmin

Schedule Screen

Clicking on Schedule will bring you to the following screen. This screen shows you the
Type (more on that later), whether the scheduled task is enabled or not, the frequency to
run the task, the retry time lapse (used if the task fails), and the next start date & time for
that task. There are two links for each task: a) an edit icon b) a history link. More on

these later in this document.

y \—d Schedule

Type
DotMetMuke,PurgeUsersCnline, DOTHNETHUKE
DotMetMuke . PurgeSitelog, DOTMETHNUKE
DaotMetMuke, Scheduling. PurgeScheduleHistary, DOTMETHUKE
DotMetNuke Logging.PurgeLogBuffer, DOTNETHUKE, XMLLOGEINGPROYIDER.

DotMetNuke Logging. SendLoghotifications, DOTHETMUKE XMLLOGEINGPROVIDER

Enabled Frequency

=

(]
=@
(]
(7]

every 1 minuke
every 1 day

every 1 minuke
every 1 minuke

every 1 minuke

Retry Time Lapse MNext Start

every 5 minutes
every 2 haurs

every 5 minutes
every 5 minutes

every 10 minutes

£1/2004 9:53:00 PM History
£(2/2004 9:52:00 PM Histary
£1/2004 9:53:00 PM Histary
£1/2004 9:53:00 PM History

6/1/2004 9:53:00 PM History

The following actions are available from this screen:

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

\-d Schedule
1

View Schedule Status
View Schedule History |DCTHE
Add Item to Schedule ey

DotMethuke, Scheduling, Purgescheduls

Edit Schedule Screen

You can edit a scheduled task’s settings by clicking on the pencil next to the task. This
will bring you to the following screen:

g

Edit Schedule

Available Tasks:

Time Lapse:
Retry Frequency:
Retain Schedule

History:

Run on Event:

Object
Dependencies:

Schedule Enabled:

Catch Up Enabled:

| DotMetMuke. PurgeUsersOnline, DOTNETNUKE =]
pYes

|1— I Minutes 'l

Example: "5" and select "Minutes” to run kask every S minutes, Leave blank to disable timer For this task,

IS— I Minutes 'I

Example: "5" and select "Minutes” to retry the task every 5 minutes after a Failure, Leave blank to disable retry-timer For this task,
1 -

Example: Select "10" to keep the ten most recent schedule history rows,

INDne 'I

Example: Select "Application Start” to run this event when the web app starts. Please note, events run on APPLICATION_EMD may
not run reliably on some hosts,

[ves

If checked, if the webserver is ever out of service, when the webserver is back in service this event will run once for each
frequency that was missed during the downtime,

IUsersOnIine
Enter the tables ar other objects that this event is dependent on. Example: "SiteLog, Users,Usersonling”
Delete Save

< Available Tasks — this drop down includes a list of all classes in any assemblies in
the /bin directory that inherit from DotNetNuke.Scheduling.SchedulerClient.
Reflection is used to gather this list.

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

<> Schedule Enabled — select this to enable the task to run in the scheduler. Uncheck it
to disable the task in the scheduler.

< Time Lapse — this represents how often you would like the task to run. You may
choose “x” number of minutes/hours/days.

< Retry Frequency — if the scheduled task fails, it will be retried after this timeframe
has lapsed.

<> Retain Schedule History — each time the task is run, a record is stored in the
database to reflect the success/failure of the task, and it also stores any notes that
were written during execution (more on that later). The number specified in this
field represents how many records to retain in history for this task.

<> Run on Event —You can schedule tasks to run on APPLICATION_START. Currently
the only option here is APPLICATION_START. After quite a bit of testing, it was
discovered that APPLICATION_END is a bad place to put code that must run...there
is no guarantee that it will ever run...therefore APPLICATION_END is not an option
here.

< Catch up Enabled — If your task is scheduled to run every 10 minutes, for instance,
and the scheduler is shut down for some reason (reboot of server, etc...). When the
scheduler is started again, if catch up is enabled for this task, the task will run once
for each of the time lapses that were missed. So if the scheduler was down for an
hour and catch up is enabled, it will run the task 6 times to catch up. If catch up is
not enabled, the scheduler will just run the scheduled task once and continue with
its schedule

< Object Dependencies — Since the scheduler is multi-threaded, it is important to
avoid deadlocks on simultaneously running threads. For this reason, an object
dependency can be specified to prevent other tasks with the same object dependency
at the same time. For instance, if you have one task (“Task A”) that does a select on
the Users table...and it has an object dependency of “Users” (this doesn’t necessarily
have to relate to a table name, it can be anything, but for clarity I'm using “Users”
because we are using the Users table)...another task (“Task B”) does an massive
update on the “Users” table. If you don’t want these two tasks to run at the same
time ever, then make sure they have the same object dependency. You can specify
more than one (comma delimited). So for “Task B” you could have object
dependencies of “Users,UsersOnline,Portals”...and that task won’t run when “Task
A” is running because they have conflicting dependencies. One will run, and when it
finishes, the other will run.

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

Schedule Status Screen

Clicking on “View Schedule Status” will bring you to the following screen. In this screen
you can see the current status of the schedule, how many threads are active/available,
and you can start and stop the scheduler. You can also see any tasks that are currently
processing, as well as those in the queue.

~ Schedule Status

Current Status: RUNNING_TIMER_SCHEDULE
Max Threads: 10

Active Threads: 2

Free Threads: 8

Command: Skart Stop

Items Processing

Schedule

Duration Dbject A Process
D Type Started {seconds) Dependencies Triggered By Thread Notes Group
3 Dothethuke Scheduling PurgeScheduleHistory, DOTHETRILKE ?ful-fzzsn-g; o 0.0100144 ScheduleHistary STARTED_FROM_TIMER 841 0
DotMetMuke. Logging. SendLoghatifications, &f11#N04 " :
S DOTNETNUKE. #MLLOGRINGPROVIDEE. * 10:28:47 PM u] *MLLoggingProvider STARTED_FROM_TIMER 994 5
Items in Queue
Time .
Schedule overdue . Object = Process
o Type Next Start {seconds) Dependencies Triggered By Group
(seconds)
2 Dicthiethiuke. PUrgeSitelog, DOTNETHLKE e 84193.025768 Sitelog STARTED_FROM_TIMER | Linassigred
DotMetMuke, Logging. PurgelogBuffer, 612004 . .
4 e Pl 40621168 0 WMLLoggingProvider STARTED_FROM TIMER 4
1 Ditfiethiuke, PurgelsersOnine, DOTNETHUKE f‘é”zzﬂug‘j‘ o 4042088 0 UsersOrline STARTED_FROM_TIMER 8

<> Current Status — this tells you what status the scheduler is in. Values you may see
here are:
WAITING FOR OPEN THREAD

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

RUNNING EVENT SCHEDULE
RUNNING TIMER SCHEDULE
SHUTTING DOWN

STOPPED

< Max Threads — this is determined in web.config (details above)
Active Threads — tells you how many tasks are currently running. Above you can see two

tasks running.

¢
¢

<>

Free Threads — this is MaxThreads minus Active Threads

Command - this allows you to start/stop the scheduler. Note: you can disable it in
web.config as well for a long-term setting.

Items processing — these tasks are currently being executed.

Schedule ID — unique identifier for the scheduled task

Type — the fully qualified type & assembly of the task

Started — time & date when the task was started

Duration - # of seconds the task has been running

Object dependencies — explained above

Triggered by — tells you whether the task was triggered by an event or the timer
Thread — this is the thread id that the task is running on

Notes — any notes that are written out during task execution will be displayed here
(more on this later)

Process group — this is the numeric representation of the thread pool that the task
was assigned to (helpful for multi-threaded debugging, etc.)

Items in Queue — these tasks are queued up for execution.

Schedule ID — unique identifier for the scheduled task

Type — the fully qualified type & assembly of the task

Next Start — time & date when the task is scheduled to run next

Overdue - # of seconds that have passed since the task should have run

Time Remaining - # of seconds until the task is scheduled to run

Object dependencies — explained above

Triggered by — tells you whether the task was triggered by an event or the timer
Process group — this is the numeric representation of the thread pool that the task
was assigned to (helpful for multi-threaded debugging, etc.). The thread pool is
assigned just before the task is executed.

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

Schedule History Screen

The following screen represents the history of a scheduled task. You can see when the
task began, ended, how long it took to execute, whether it was successful, when its next
start was scheduled for, and any notes written out during execution.

Schedule History

Started Ended
6/1/2004 9:52:00 PM 6/1f2004 2:52:04 PM

5/30/2004 1:25:14 AWM 5/30/2004 1:25:15 AM

Duration {(ms) Succeeded Mext Start

3.976

5/31/2004 12:27:02 PM 5/31/2004 12:27:03 PM 1,352

0,981

True
True

True

6f2f2004 9:52:00 PM
6/1/2004 12:27:02 PM
5/31/2004 1:25:14 AM

Motes

Purged Site Log Successfully
Purged Site Log Successfully
Purged Site Log Successfully

Data Structure

The data that drives the scheduler is stored in a database and utilizes the default
DotNetNuke database provider as specified in web.config. There are three tables:

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

ScheduleHistory
% Calurn karme | Data Tvpe |Length | Allow Mulls
Schedule i gc:e:u:e;—gstorym |n: : (I
Colurnn Marne: | Data Type |Length | Allow Mulls & | |»cheddle n .
- StartDate datetime 8
iScheduIeID int 4 [I Erdbat dateti 5
TypeFulMame warchar 200 | |EndUate ,E' EHme k4
— : Succeeded bit 1 W
_TlmeLapse ink 4 Lok bt 1€
TimeLapseMeasureme warchar 2 || -ognates ntex - v
— 3 : MexkStark datetime 8 W
L RetryTimelLapse ink 4 —
L RetryTimeLapseMeasy warchar 2 — j
L RetainHistaryMum ink 4
L AttachToEvent warchar 50
CatchUpEnabled bit 1
— f—| _
| |Enabled bit 1 ScheduleltemSettings
L ObjectDependencies | warchar 300 Colurmn MName | Daka Type |Length | Allows Mulls
] hd| | |Schedulen ink 4 [
L SetkingMame rsarchar 50
Setting¥alue rsarchar 256
] =

Sample Code

Below is an example of a scheduled tasks. It can be found in the following file in the
DotNetNuke project:

/admin/Users/UsersOnlineDB.vb

10

Each task has it’s own class, in this case the class name is PurgeUsersOnline.

The class must inherit from DotNetNuke.Scheduling.SchedulerClient

The class must have a constructor with the same signature as the one to the right. You must also set
the value of the ScheduleHistoryItem to the value of the incoming parameter.

The DoWork method is what gets called from the scheduler. It must be follow the same logic &
format as the example to the right...meaning, you need a Try/Catch, with all of the required items

included (required items are noted in the code).

Me.Progressing tells the scheduler that the task is progressing. This is optional, and is useful for long

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

g
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

11

running tasks.

UpdateUsersOnline() is where the actual work is getting done.

Me.ScheduleHistoryltem.Succeeded = true is required after the work is done

If you want to add any notes to the schedule history, you can call “AddLogNote()” as shown to the

right. You can call it as many times as necessary.

It is important to properly handle exceptions in DoWork(). Ideally, copy the entire Catch section to

your task class.

Once you compile your class and put it in /bin, it will be available in the schedule admin screens to

add the task to the schedule

353 Class Purgellsersonline

3549 Inherits DotHetNuke. Scheduling. SchedulerClient

355

356 Public Sub MNew (ByWal objScheduleHistoryItem As DotMNetMuke.Scheduling.ScheduleHistcoryItem)
357 MyBase.newl()

3585 Me.S3cheduleHistoryItem = objS3cheduleHistorwItem

359 | End Sub

360iF Public Owverrides Sub DoWorki)

361 Trw

36z

363 'notification that the ewvent is progressing

364 Me . Progressing () 'OPTIONLL

365

366 UpdatelUsersOnline ()

357

365 Me.3cheduleHistoryItem. Zucceeded = True 'REQUIRED

363

370 Me . ScheduleHistoryIltem. AddLogilote ("Purged Ussers Online Successtully™)
371

37z Catch e As Exception ' REQUIRED

373

374 Me.3cheduleHistorvyItem. 3ucceeded = False 'REQUIRED

375

37e Me.ScheduleHistoryItem. AddLogilote ("EXCEPTION: " + exc.ToString) 'COFTICHAL
jcarary

37E 'nmotification that we have errored

37 Me.Errored(exc) 'REQUIERED

380

351 'log the exception

382 LogException (exc) 'OFTICHNLL

383 End Trv

3584 - End Sub

385K Priwvate Sukb UpdatelsersOnline ()

3805

387 I Dim objUserCnlineController As UserCnlineController = HNew UserCnlineController
385

389 ' Is Users Online Ensbled?

320 '

391 If (objUserOnlineController.IsEnabled()) Then

39z ' TUpdate the Users Online records from Cache

393 '

3949 Me.Status = "Updating Users Online'

395 ohilUserinlineController . TpdatellsersOnline ()

396 Me.3tatus = "Update Users Online Successfully™

397 Me.ScheduleHistcoryItem. AddLogNote ("UUsers Online Updated Successtully™)
390 Me.ScheduleHistoryItem. Succeedsd = True

399 End If

400

401 - End Sul

402 - End Class

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

Scheduled Task Settings

There is a table named “ScheduleltemSettings” that can store settings for each scheduled
task. The settings are stored in key/value pairs with a foreign key of
Schedule.ScheduleID. The settings can be retrieved from your task class (i.e. in the
DoWork() method perhaps) using the following syntax:

The settings are retrieved from the table when the schedule queue is refreshed from the
database (every 10 minutes or when a change is made to the schedule).

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

12

N 3
Y« DOTNETNUKE

DotNetNuke Scheduling Provider

Class Diagram

3 scheduling.Schedulelterm enur .. SchedulingProvider
Scheduling ScheduleSource i R
-_SthedulsiDinteger -_providerCanfiguration:Provide
-STARTED_FROM_EVENT:Object TypeFullName String -APPLICATION_START:Object 5= | -_providerPatn:String
-STARTED_FROM_TIMER:Object TimeLapsednieger DebugBoolean
= TimeLapseMeasurement Str -_MaxThreadsnteger
-_RetnTimeLapse:ineger -_Enabled:Boolean
-_RetnyTimeLapseMeasuremen| +EventName:Scheduling Event
- ObjeciDependenties Siring -[ProviderTypel String
-_RetalnHistoryNum:Intager
g
-_CatchUpEnabled:Boolean +Instance:SchedulingProvider
-_Enabled Boolean +GelProviderPatn:String
- AtachToEventString +Start
-_ThreadiD:ineger +Restart
ProcessGroupInteger +StarAndwaitForResponse
ScheduleSouree:ScheduleSo +Halt
ScheduleltemSettings:Hashtal +PurgeStheduleHistory
_— +RUNEventhedule
“New +GetSchedule:AmayList
+HasObjeciDependencies:Bool +GetSchedule:Seheduleltern
+AdgSetling +GetScheduleHistory ArayList
+GetSetting:String +GetschedulequeusColisction
+GetSettings Hashlable +GetgcheduleProsessing Collel
+Seleflings +GefFreeThreadCount Integer
_—— +GetActiveThreadCount Integer
RetyTimeLapseMeasurement +GetMaxThreadCount nteger
RetnyTimeL apse:Integer +GetScheduleStatus Scheduled
ObjectDependencies:String +AddScheduleInteger
HextStartDate +UpdateSchedule
EnabledBoolean +DelgteSehedule
ProcessGroupinteger
CatchUpEnabled:Boolean FroviderPath String
TimeLapse Integer Enabled:Boolean
Thread|D:Integer Dehug:Boolean
TyneFullName:String MaxThreads:integer
AttachToEvent String
ScheduleSource:ScheduleSour
RetainHistaryHum:integer
TimeL trin
SchedulelDinteger Dolliethuke. Scheduling SchedulerClient DotetNuke Seheduling SehedulerClient
*hew +Hew
+Doiark +Dovork
Scheduling.ScheduleQueueftem -Purse
23...ScheduleHistoryttem Schedulng.WorkStarted | [Scheduling.\WorkCompleted | [SchedulingWorkProgressing
-_SeheduleHistoryD Integer
-_StartDate:Date
EndDate:Date
-_SucceedediBoalean
-_Loghotes:System Text StringH
+New
+AddLaghote
RenainingTime Double
StanDate:Date
SuccesdedBooiean
EndDate:Date
OverdueByDouble
Overdue:Boolean
Logotes:String
ElapsedTime:Double
ScheduleHistoniDiinteger
3 Scheduling SchedulerClient Scheduling.¥orkErrored
- UID Siring
Processhethod:Sting
Status:String
ScheduleHistoryter Schedul
+Staned
+Frogressing enum
+Completed Scheduling.ScheduleStatus
+Enrored
+Dowork SWAITING_FOR_OPEN_THREAD:Object
+New -RUNNING_EVENT_SCHEDULE:ORj&tt
R -RUNNING_TIMER_SCHEDULE:Object
Status:string -SHUTTING_DOWN:Object
ScheduleHistayierm:Schedulel ~STOPPED:Object
aProcesshethod:String
ThreadiD:Integer
SehedulerEveNGUID:String
ProcessStarted
ProcessPragressing
PracessCompleted
PracessErrared

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

g
)¢ DOTNETNUKE 14

DotNetNuke Scheduling Provider

Additional Information

The DotNetNuke Portal Application Framework is constantly being revised and
improved. To ensure that you have the most recent version of the software and this
document, please visit the DotNetNuke website at:

The following additional websites provide helpful information about technologies and
concepts related to DotNetNuke:

DotNetNuke Community Forums

Errors and Omissions

If you discover any errors or omissions in this document, please email

of the error and the corrected content along with any additional information that will
help us in correcting the error.

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

g
e« DOTNETNUKE

DotNetNuke Scheduling Provider

Appendix A: Document History

Aug 16, 2005 @ Shaun Walker e Applied new template

Copyright © 2003-2005 Perpetual Motion Interactive Systems, Inc. All Rights Reserved.

15

